Slate Pears Game 120: Dec. 14, 2025
6 hours ago
Do you use Facebook? Do you like Io? Well, become a Fan of Io on the popular social networking website. I had considered creating such a page on Facebook for a while now, but as you can see, someone did if for me, and that's fine with me.
The other day I posted a link to Ted Stryk's version of a color image acquired of Pillan and nearby features during the I27 encounter in February 2000. At right is my version.
Today marks the first birthday for the Gish Bar Times. You can check out the original Welcome message that I posted a year ago this very minute. Despite the lack of a spacecraft at Io during this past year, and there won't be until Juno arrives in 2016, this past year has been pretty exciting with the Outer Planet Flagship Mission contest, a legitimate proposal to send a dedicated mission to Io, and further processing work on Galileo images of Io.
The second Io paper posted Saturday on the journal Icarus's Articles in Press page is titled, "Formation of mountains on Io: Variable volcanism and thermal stresses". The authors for this paper are Michelle Kirchoff and Bill McKinnon from the Lunar and Planetary Institute in Houston and Washington University in St. Louis. This paper takes a look at the geophysics behind the formation of mountains on Io and why there is a global scale anti-correlation between mountain and volcanic paterae. In a nutshell, they find that variations in volcanic activity can vary the level of thermal stresses in Io's lithosphere, which in concert with subsidence stress (a compressive stress that increases with depth resulting from the high resurfacing rate), leads to the formation of thrust faulting and mountains if that volcanic activity decreases.
As I pointed out yesterday, two papers were added to the journal Icarus's Articles in Press. The first that I want to summarize here is titled, "Io's Dayside SO2 Atmosphere." The authors of this paper are Lori M. Feaga, Melissa McGrath, and Paul D. Feldman. The authors of this paper examined far-ultraviolet data acquired by the STIS instrument on the Hubble Space Telescope between 1997 and 2001 to see what this dataset can tell us about the density of Io's atmosphere and how it varies across Io's disk.
Eric posted a few comments yesterday which provided a great suggestion for a blog post. What are the outstanding science questions that remain following Galileo and New Horizons? Can these questions be answered by the Jupiter Europa Orbiter (and Io Volcano Observer)? While better understanding Io's potential habitability by native lifeforms is certainly not one of them, there are at least five I can list here.
With a mission now planned for the Jupiter system in the 2020s, how will the Io Volcano Observer proposal be affected? Would a dedicated Io mission even be necessary?
The news of the Outer Planet Flagship downselection is beginning to reverberate across the internet and planetary science community. Jim Green, the directory of the Planetary Science Division at NASA, has posted a message to the Science Community on the OPF website. The Planetary Society has also issued a statement on this announcement. You can check that out on Emily Lakdawalla's blog. Also, check out the thread on at UMSF if you wish, though feel free to leave a comment here with your reaction to this news.NASA and ESA engineers and scientists carefully studied both potential missions in preparation for last week's meeting. Based on these and other studies as well as stringent independent assessment reviews, NASA and ESA agreed that the Europa Jupiter System Mission, called Laplace in Europe, was the most technically feasible to do first. However, ESA's Solar System Working Group concluded the scientific merits of this mission and a Titan Saturn System Mission could not be separated. The group recommended, and NASA agreed, that both missions should move forward for further study and implementation.Basically, they felt the Europa mission is ready to fly now, but the Titan mission should not just be shelved, so look for the Titan people to make a big push during the next flagship mission opportunity.
In my previous articles on the Europa/Jupiter System Mission, I have focused on the kinds of science that the Jupiter Europa Orbiter (JEO) can gather at Io, and rightly so. Of the two components of the mission, JEO will be the probe that will flyby Io, perform high-resolution science observations of that satellite. In addition, only the Jupiter Europa Orbiter has a narrow-angle camera capable of studying Io's geology and surface changes with spatial resolutions of better than 10 kilometers per pixel during most orbits during the Jupiter tour segment for that spacecraft, and while in Europa orbit. But can the ESA-supplied Jupiter Ganymede Orbiter still provide useful science at Io, even though it never comes within 650,000 km of Io? Let's delve a bit into the ESA Assessment Report for JGO to find out.
Yesterday we took a more detailed look at the types of observations that are being planned for the Europa/Jupiter System Mission (if it's selected as the next flagship mission). The Final Report for the Jupiter Europa Orbiter also provided us with details of the encounters planned in the current reference trajectory for the mission. One of the types of observations that I want to talk about today is sub-surface sounding using the Ice Penetrating Radar (IPR). This is a type of observation that has never been done at Io and I have become curious as to what IPR (or a similar instrument) could see if it were turned at Io.
Now with those depths and vertical resolutions, what kinds of structures would IPR see? Let's take a look at two potential swaths, shown at left. During the two minutes surrounding closest approach during the July 2026 Io-1 encounter (300 km at C/A), the JEO spacecraft would pass just north of an unnamed active volcano, then travel southeast across the Maui portion of the large Amirani flow field, then across an active patera thought to be the source vent for Amirani, and then over the older flows at Amirani as well as the plume deposit from the volcano. After passing over Amirani, JEO would continue to travel southeast, finally passing over the 6-km tall mountain Monan Mons. During the two minutes surrounding closest approach during the December 2026 Io-4 encounter (75 km at C/A), JEO would pass over four paterae, including two active volcanoes: Malik Patera and Altjirra Patera (the two dark patera under the flight path, left and right respectively). No topographic structures beyond these paterae are under the flight path. The flight path would also cross a couple of old flow lobes associated with Arusha Patera.
Now that the more detailed mission studies for both the Jupiter Europa Orbiter and the Jupiter Ganymede Orbiter are now online, we can delve a little deeper into the science plans for Io. For some background from the Joint Summary Reports posted last month, check out my first Io Science with EJSM post. Again, Van Kane will cover the Titan stuff from the TSSM in detail. Don't forget that the downselection meeting was today (no, I don't know who won), and an announcement should be made some time early next week.
The above figure shows the ground track for the four planned Io flybys. The first, taking place shortly before JOI on December 21, 2025, would have an altitude of 1000 km and would be used to help setup the the Jupiter Orbit Insertion maneuver. As currently planned, no remote sensing observation would be acquired so as to reduce the risk to the all-important JOI, though further study if EJSM is selected would be conducted to see how much risk there actually is. The Io gravity assist would help save 200 m/s in delta-V, which amounts to a dry mass increase of 160 kg, over an earlier plan to use a Ganymede flyby before JOI to help slow the spacecraft into orbit around Jupiter. Even with the additional shielding that will be required, this still amounts to more than 100 kg in mass margin.
The third encounter (Io-4) would take place on December 27, 2026, two orbits after Io-2 and would include the closest approach altitude of the four encounters, only 75 km. At such a low altitude, the high priority is to sample a plume using the INMS. However, the close approach point is located between Malik and Altjirra Patarae, where no previous plume has been observed. If the IPR is pointed at nadir when JEO flies over Malik and Altjirra, the spacecraft could go a long way toward constraining the formation models of Ionian paterae by looking at the sub-surface structure of these two (fault planes and perhaps shallow magma reservoirs). Once again, inbound JEO should be able to image the portions of the anti-jovian and trailing hemispheres between 150° and 260° West longitude in sunlight. The Final Report includes a detailed observation scenario for I4, ±30 minutes of closest approach, which is graphically shown at right. IPR would observe Io ±1 minute surrounding closest approach. The most of the optical remote sensing instruments would operate prior to close approach, except TI whould would be run continuously after closest approach. The laser altimeter would acquire a ground track ±6 minutes surrounding closest approach.
In addition to these flybys, sixteen non-targeted encounters during the Jupiter tour with close approaches distances between 56,300 km and 479,000 km have been identified. Most of these encounters would provide opportunities to monitor activity on Io's anti-jovian hemisphere with resolutions ranging from 560 m/pixel to 4.8 km/pixel. One interesting opportunity comes on October 29, 2026 when JEO approaches the trailing hemisphere from a distance of 185,428 km. This should allow imaging of the Pele-Loki hemisphere at resolutions approach 1.85 km/pixel. While not as good as the 500 m/pixel imaging planned (and lost due to budget constraints) for orbit A34 in November 2002, this non-targeted flyby should provide a nice change to image Pele at reasonable emission angles, Loki, and Ra as well as terrain last best seen by Voyager 1 near the south pole. During these encounters and other opportunities during the Jupiter tour and during the fourth Europa Campaign, JEO will conduct monitoring observation, searching for surface changes, plumes (both longitudinal coverage to search for them and to create plume movies), and monitoring the evolution of Io's volcanic activity over a 2.5- to 3-year time scale.
The Lunar and Planetary Science Conference will see two Io Volcano Observer posters. The first, by Alfred McEwen et al., is titled "Io Volcano Observer (IVO)". This poster will provide an overview of the mission concept, with the abstract providing quite a few details of the planned payload. The second, by Keszthelyi et al, is titled "Optimal Wavelengths for Studying Thermal Emission from Active Volcanoes on Io". This poster will look at some of the work that has gone into filter selection and instrument design for IVO's radiation-hard camera (RCam) and Thermal Mapper (ThM).
Welcome to The Gish Bar Times, the only blog dedicated to Jupiter's volcanic moon, Io!